Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China; Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC/VUmc and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, 1081 HZ, the Netherlands
Fengjun Hu
Institute of Information Technology, Zhejiang Shuren University, Hangzhou, Zhejiang, 310000, China
Yixin Mao
Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 HZ, Netherlands
Liang Yan
Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
Yuhui Zhang
Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
Zhichao Zheng
Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
Antong Wu
Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
Tymour Forouzanfar
Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC/VUmc and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, 1081 HZ, the Netherlands
Janak L. Pathak
Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China; Corresponding author. 31 Huangsha Avenue, Guangzhou, Guangdong Province, 510140, PR China.
Gang Wu
Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC/VUmc and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, 1081 HZ, the Netherlands; Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), University van Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081LA, Netherlands; Corresponding author. Gustav Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.
Pleurocidin-family cationic antimicrobial peptide NRC-03 exhibits potent and selective cytotoxicity towards cancer cells. However, the anticancer effect of NRC-03 in oral squamous cell carcinoma (OSCC) and the molecular mechanism of NRC-03 induced cancer cell death is still unclear. This study focused to investigate mitochondrial oxidative stress-mediated altered mitochondrial function involved in NRC-03-induced apoptosis of OSCC cells. NRC-03 entered the OSCC cells more easily than that of normal cells and bound to mitochondria as well as the nucleus, causing cell membrane blebbing, mitochondria swelling, and DNA fragmentation. NRC-03 induced high oxygen consumption, reactive oxygen species (ROS) release, mitochondrial dysfunction, and apoptosis in OSCC cells. Non-specific antioxidant N-acetyl-l-cysteine (NAC), or mitochondria-specific antioxidant mitoquinone (MitoQ) alleviated NRC-03-induced apoptosis and mitochondrial dysfunction indicated that NRC-03 exerts a cytotoxic effect in cancer cells via inducing cellular and mitochondrial oxidative stress. Moreover, the expression of cyclophilin D (CypD), the key component of mitochondrial permeability transition pore (mPTP), was upregulated in NRC-03-treated cancer cells. Blockade of CypD by siRNA-mediated depletion or pharmacological inhibitor cyclosporine A (CsA) significantly suppressed NRC-03-induced mitochondrial oxidative stress, mitochondrial dysfunction, and apoptosis. NRC-03 also activated MAPK/ERK and NF-κB pathways. Importantly, intratumoral administration of NRC-03 inhibited the growth of CAL-27 cells-derived tumors on xenografted animal models. Taken together, our study indicates that NRC-03 induces apoptosis in OSCC cells via the CypD-mPTP axis mediated mitochondrial oxidative stress.