PLoS ONE (Jan 2019)
A rapid detection tool for VT isolates of Citrus tristeza virus by immunocapture-reverse transcriptase loop-mediated isothermal amplification assay.
Abstract
Severe strains of Citrus tristeza virus (CTV) cause quick decline and stem pitting resulting in significant economic losses in citrus production. A immunocapture reverse-transcriptase loop-mediated amplification (IC-RT-LAMP) assay was developed in this study to detect the severe VT strains that are typically associated with severe CTV symptoms. The sensitivity of RT-LAMP assay was determined by ten-fold serial dilutions of CA-VT-AT39 RNA, in comparison to one-step RT-droplet digital (dd) PCR. RT-LAMP detected up to 0.002 ng RNA with an amplification time of 10:35 (min:sec.), equivalent to 11.3 copies as determined by one step RT-ddPCR. The RT-LAMP assay specifically detected CA-VT-AT39 RNA and did not cross react with other CTV genotypes tested (T36, T30, RB, S1 and T68). To facilitate rapid on-site detection, the RT-LAMP assay was improved by first capturing the CTV virions from citrus crude leaf sap using CTV-IgG (IC-RT-LAMP), thereby eliminating nucleic acid extraction steps. IC-RT-LAMP assay was optimized with two-fold dilutions of CTV-IgG ranging from 1:500 to 1:16,000. The IC-RT-LAMP assay detected the CA-VT-AT39 virions in all dilutions tested. The minimum amplification time was 6:45 (min:sec) with 1:500 and 1:1000 of CTV-IgG dilutions. The limit of detection of IC-RT-LAMP assay with crude leaf sap of CA-VT-AT39 was 1:320 with a maximum amplification time of 9:08 (min:sec). The IC-RT-LAMP assay was validated for VT genotype by comparing to IC-RT-qPCR using the CTV from 40 field tree samples. A 100% agreement was observed between tests, regardless of single or mixed infections of CTV VT with other genotypes. Therefore, the IC-RT-LAMP assay can serve as a useful tool in the management of potentially severe strains of CTV.