Open Chemistry (Jan 2024)

Impact of biogenic zinc oxide nanoparticles on growth, development, and antioxidant system of high protein content crop (Lablab purpureus L.) sweet

  • Qahtan Ahmed A.,
  • Alatar Abdulrahman A.,
  • Salih Abdalrhaman M.

DOI
https://doi.org/10.1515/chem-2023-0189
Journal volume & issue
Vol. 22, no. 1
pp. 3974 – 83

Abstract

Read online

Lablab (Lablab purpureus L.) Sweet “white” is a vegetable crop belonging to the Fabaceae family, and it has been used in many ways as food, ornamental plant, green manure, and medicinal. In contrast, zinc oxide nanoparticles (ZnO NPs) play an important role in plant growth and development. The aim of this current study was to investigate the impact of biogenic ZnO NPs on the growth, development, and antioxidant system of L. purpureus (Sweet). Thus, different concentrations (0.0, 10, 25, 50, and 100 mg/L) of biogenic ZnO NPs were used. The seeds of Lablab were immersed into the concentrations of ZnO NPs for 24 h and cultivated in sterilized soil. Next, after 2 months of growth under greenhouse conditions, the morphological and physico-biochemical parameters were evaluated. In general, the recorded results showed that the biogenic ZnO NPs have a significant impact on germination, fresh and dry biomass of the Lablab crop. The same results were observed with photosynthetic pigments, carotenoids, total protein content, enzyme activity, and phenolic comments. Also, the accumulation of nutrients such as nitrogen and zinc in edible tissue was increased in response to the addition of ZnO NPs. Moreover, the scavenging ability of sample methanolic extract to diphenyl-2-picryl-hydrazyl, azino-bis-3-ethylbenzothiazoline-6-sulfonic acid, and hydrogen peroxide was affected by the addition of biogenic ZnO NPs. Furthermore, the level of gene expression under ZnO NPs can be investigated for a better understanding of the process that leads to improving the growth and development of crops.

Keywords