Objective To identify the risk areas of deaths due to unspecified pneumonia and tuberculosis (TB) in children, and to identify if there is a relationship between these events with higher TB incidence and social determinants.Methods Ecological study carried out in Brazil. All cases of TB or unspecified pneumonia deaths in children under 5 years of age reported between 2006 and 2016 were included and collected through Department of Informatics of the Unified Health System (Brazil’s electronic database). The Spatial Scan Statistics was used to identify areas at higher risk of dying from this event. The spatial association was verified through the Getis-Ord techniques. The Bivariate Moran Global Index was used to verify the spatial autocorrelation between the two events. To identify the association of TB and pneumonia deaths with endemic areas of pulmonary TB and social determinants, four explanatory statistical models were identified.Results A total of 21 391 cases of pneumonia and 238 cases of TB were identified. Spatial scanning analysis enabled the detection of four clusters of risk for TB (relative risk, RR, between 3.30 and 18.18) and 22 clusters for pneumonia (RR between 1.38 and 5.24). The spatial association of the events was confirmed (z-score 3.74 and 64.34) and spatial autocorrelation between events (Moran Index:0.031 (p=0.001)). The zero-inflated negative binomial distribution was chosen, and an association for both events was identified with the TB incidence rate (OR 5.3, 95% CI 2.85 to 9.84; OR 6.63, 95% CI 5.62 to 7.81), with the Gini Index (OR 1.78, 95% CI 1.12 to 2.82; OR 4.22, 95% CI 3.63 to4.92). Primary care coverage showed an inverse association for both events (OR 0.10, 95% CI 0.67 to 0.17; OR 0.18, 95% CI 0.15 to 0.21) for pneumonia). Finally, a family that benefited from the Bolsa Família Programme had an inverse association for deaths from pneumonia (OR 0.81, 95% CI 0.52 to 1.25).Conclusions The results do not just contribute to reduce mortality in children, but mainly contribute to prevent premature deaths through identification of critical areas in Brazil, which is crucial to qualify health surveillance services.