Journal of Orthopaedic Surgery and Research (Sep 2022)

ZEB1 regulates bone metabolism in osteoporotic rats through inducing POLDIP2 transcription

  • Xianwei Zhu,
  • Fei Yan,
  • Lipeng Liu,
  • Qun Huang

DOI
https://doi.org/10.1186/s13018-022-03312-0
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Osteoporosis (OP) is a common metabolic bone disease mainly involving bone remodeling and blood vessels. The current study aimed to explore the role of zinc finger E-box binding homeobox 1 (ZEB1) in OP. Methods First, gene expression microarrays for OP were downloaded from the Gene Expression Omnibus database and analyzed to screen for potential targets. Subsequently, a rat OP model was constructed using ovariectomy (OVX), and osteoblastic and osteoclastic differentiation and alterations in osteoporotic symptoms were observed upon intraperitoneal injection of oe-ZEB1 lentiviral vectors. DNA polymerase delta interacting protein 2 (POLDIP2) was predicted to be a downstream target of ZEB1, which was validated by ChIP-qPCR and dual-luciferase experiments. RAW264.7 cells were subjected to lentiviral vector infection of oe-ZEB1 and/or sh-POLDIP2, followed by RANKL treatment to induce osteoclast differentiation. Results ZEB1 was poorly expressed in blood samples of postmenopausal patients with OP and in bone tissues of OVX-treated rats. Overexpression of ZEB1 or POLDIP2 in OVX rats promoted osteoblastogenesis and inhibited osteoclast differentiation. In RANKL-treated RAW264.7 cells, the transcription factor ZEB1 enhanced the expression of POLDIP2, and silencing of POLDIP2 attenuated the inhibitory effect of oe-ZEB1 on the differentiation of macrophages RAW264.7 to osteoclasts. Conclusions ZEB1 promotes osteoblastogenesis and represses osteoclast differentiation, ultimately reducing the occurrence of postmenopausal OP by elevating the expression of POLDIP2.

Keywords