SciPost Physics (Jul 2024)
Celestial sector in CFT: Conformally soft symmetries
Abstract
We show that time intervals of width $\Delta \tau$ in 3-dimensional conformal field theories (CFT$_3$) on the Lorentzian cylinder admit an infinite dimensional symmetry enhancement in the limit $\Delta \tau → 0$. The associated vector fields are approximate solutions to the conformal Killing equations in the strip labelled by a function and a conformal Killing vector on the sphere. An Inonu-Wigner contraction yields a set of symmetry generators obeying the extended BMS$_4$ algebra. We analyze the shadow stress tensor Ward identities in CFT$_d$ on the Lorentzian cylinder with all operator insertions in infinitesimal time intervals separated by $\pi$. We demonstrate that both the leading and subleading conformally soft graviton theorems in $(d-1)$-dimensional celestial CFT (CCFT$_{d-1}$) can be recovered from the transverse traceless components of these Ward identities in the limit $\Delta \tau → 0$. A similar construction allows for the leading conformally soft gluon theorem in CCFT$_{d-1}$ to be recovered from shadow current Ward identities in CFT$_d$.