Atoms (Jun 2019)
Stochastic Electrodynamics: Lessons from Regularizing the Harmonic Oscillator
Abstract
In this paper, the harmonic oscillator problem in Stochastic Electrodynamics is revisited. Using the exact shape of the Lorentz damping term prevents run-away effects. After introducing a cut-off in the stochastic power spectrum and regularizing the stochastic force, all relevant integrals are dominated by resonance effects only and results are derived that stem from those in the quantum ground state. For an orbit with specific position and momentum at an initial time, the average energy and the average rate of energy change are evaluated, which stem with each other. Resonance effects are highlighted along the way. An outlook on the hydrogen ground state problem is provided.
Keywords