Morphological and Anatomical Analysis of the Internodes of a New Dwarf Variant of Moso Bamboo, <i>Phyllostachys edulis</i> f. <i>exaurita</i>
Ruofei Zha,
Tianguo Chen,
Qingnan Liu,
Qiang Wei,
Feng Que
Affiliations
Ruofei Zha
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Tianguo Chen
Changzhou Agricultural Comprehensive Technology Extension Center, Changzhou 213022, China
Qingnan Liu
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Qiang Wei
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Feng Que
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
The lack of mutants due to the long periods between flowering of bamboo plants is one of the limiting factors inhibiting research progress in the culm development of bamboo plants. In this study, a stable new dwarf variant of Phyllostachys edulis (Moso bamboo), Phyllostachys edulis f. exaurita T. G. Chen, was discovered and was characterized morphologically, anatomically, and physiologically. The height, diameter at breast height, number of internodes, length and wall thickness of internodes, length, width and number of parenchyma cells of internodes, and morphology of the wide-type (WT) and dwarf variant vascular bundles were compared. The height of the variant was only 49% that of the WT Moso bamboo. It was concluded that the decrease in internode number and length was the cause of dwarfism in P. edulis f. exaurita. The decreased internode length was the result of a decrease in cell number and cell length in the internode. In addition, the laws of change of internode length, internode thickness, cell length, and cell number differed between the WT Moso bamboo and the variant. Furthermore, lower IAA and zeatin concentrations were detected in the buds of the variant. These results suggest that P. edulis f. exaurita is a variant with inhibited primary thickening growth, which is valuable for interpretating the molecular mechanisms underlying the primary thickening growth of bamboo that are still largely unknown.