Journal of Translational Medicine (Nov 2024)

Targeting PDGF-CC as a promising therapeutic strategy to inhibit cholangiocarcinoma progression

  • Zhenchao Luo,
  • Fangfang Zhou,
  • Canliang Tan,
  • Liangchun Yin,
  • Man Bao,
  • Xiang He,
  • Haohui Li,
  • Jian Yan

DOI
https://doi.org/10.1186/s12967-024-05857-6
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Cholangiocarcinoma (CCA) is an aggressive malignancy with limited treatment options and poor prognosis. Platelet-Derived Growth Factor CC (PDGF-CC) has been implicated in the progression of various tumors, but its specific role in CCA is not well understood. This study aims to investigate the expression and function of PDGF-CC in CCA and evaluate its potential as a therapeutic target. Methods We conducted gene expression analysis using the GEPIA database to compare PDGF-CC mRNA levels in CCA tissues and normal tissues. Serum samples from CCA patients were analyzed for PDGF-CC protein levels, and immunohistochemistry was used to assess PDGF-CC expression in tissue samples. The impact of PDGF-CC on CCA cell behavior was examined by knocking out PDGF-CC in HuCCT1 and QBC939 cell lines, followed by assessments of cell proliferation, migration, invasion, and colony formation in vitro. Additionally, the effects of PDGF-CC knockout were evaluated in xenograft models. The therapeutic potential of PDGF-CC inhibition was further explored using pharmacological inhibitors and antibodies. Results PDGF-CC mRNA and protein levels were significantly elevated in CCA tissues and patient sera compared to normal controls. Immunohistochemical analysis confirmed increased PDGF-CC expression in CCA tissues. High PDGF-CC expression correlated with poor overall survival in CCA patients, as shown by Kaplan-Meier analysis. Functional assays revealed that PDGF-CC knockout significantly reduced proliferation, migration, invasion, and colony formation in HuCCT1 and QBC939 cells, the lines with the highest PDGF-CC levels. In vivo, PDGF-CC knockout markedly decreased tumor growth in xenograft models. Pharmacological inhibition of PDGF-CC mirrored the effects of genetic knockout, suggesting it as a viable therapeutic strategy. Conclusions This study underscores the critical role of PDGF-CC in CCA progression and supports the potential of PDGF-CC inhibitors as a therapeutic approach. Given the association between high PDGF-CC expression and poor prognosis, targeting PDGF-CC may improve outcomes for CCA patients. Further clinical investigations are warranted to develop PDGF-CC-targeted therapies for CCA.

Keywords