Atmosphere (Feb 2023)

On the Calculation of Urban Morphological Parameters Using GIS: An Application to Italian Cities

  • Antonio Esposito,
  • Myrtille Grulois,
  • Gianluca Pappaccogli,
  • Olga Palusci,
  • Antonio Donateo,
  • Pietro Salizzoni,
  • Jose Luis Santiago,
  • Alberto Martilli,
  • Giuseppe Maffeis,
  • Riccardo Buccolieri

DOI
https://doi.org/10.3390/atmos14020329
Journal volume & issue
Vol. 14, no. 2
p. 329

Abstract

Read online

The identification of parameters that can quantitatively describe the different characteristics of urban morphology is fundamental to studying urban ventilation and microclimate at the local level and developing parameterizations of the dynamic effect of an urban area in mesoscale models. This paper proposes a methodology to calculate four morphological parameters, namely mean height, aspect ratio, sky view factor, and plan area ratio, of five cities located in southern (Bari and Lecce), central (Naples and Rome), and northern (Milan) Italy. The calculation is performed using the Geographical Information System (GIS), starting from morphological and land use data collected and analyzed in shapefiles. The proposed methodology, which can be replicated in other cities, also presents in detail the procedure followed to properly build input data to calculate the sky view factor using the UMEP GIS tool. The results show a gradual increase in the plan area index, λp, and mean building height, H¯, moving from the south to the north of Italy. Maximum values of λp and H¯ are obtained in the regions of Milan, Rome, and Naples, where the highest spatially-averaged values are also found, i.e., λp = 0.22, H¯ = 10.9 m in Milan; λp = 0.19, H¯ = 12.7 m in Rome; λp = 0.20, H¯ = 12 m in Naples. Furthermore, for all the cities investigated, areas characterized by the Corine Land Cover class as “continuous urban fabric” are those with medium sky view factor SVF values (around 0.6–0.7) and λp values (around 0.3) typical of intermediate/compact cities. The methodology employed here for calculating morphological parameters using GIS proves to be replicable in different urban contexts. This opens to a better classification of cities in local climate zones (LCZ), as shown for the Lecce region, useful for urban heat island (UHI) studies and to the development of parameterizations of the urban effects in global and regional climate models.

Keywords