Agronomy (Dec 2024)

Analysis of Future Drought Risk and Wheat Meteorological Disaster in Ningxia (Northwest China) Based on CMIP6 and SPEI

  • Xinlong Li,
  • Junli Tan,
  • Xina Wang,
  • Qian Shang,
  • Hao Li,
  • Xuefang Li

DOI
https://doi.org/10.3390/agronomy14123051
Journal volume & issue
Vol. 14, no. 12
p. 3051

Abstract

Read online

In arid areas, droughts caused by climate change seriously impact wheat production. Therefore, research on spatial and temporal variability of dry and hot wind events and drought risk under different development patterns of future climate can provide a reference for wheat cultivation planning in the study area. Based on meteorological data under three scenarios of the CMIP6 (Sixth International Coupled Model Comparison Program) shared socio-economic path (SSP), we introduced wheat dry hot wind discrimination criteria and calculated the Standardized Precipitation–Evapotranspiration Index (SPEI). Future temperature changes within the Ningxia Province were consistent, increasing at a rate of 0.037, 0.15 and 0.45 °C·(10 a−1) under SSP126, 245 and 585 scenarios, respectively. Simultaneously, average annual precipitation would increase by 17.77, 38.73 and 32.12 mm, respectively. Dry hot wind frequency differed spatially, being higher in northern Ningxia and western Ningxia, and lower in southern Ningxia and eastern Ningxia. During the wheat growing period, there is an obvious increasing drought risk trend under the SSP585 model in May, and the possibility of drought risk in the middle period was highest under the SSP126 model. In June, SPEI was generally higher than in May, and the risk of alternating drought and flood was greater under the SSP585 model, while near-medium drought risk was lower under the SSP126 and SSP245 models. The influence of DHW (dry and hot wind) on wheat yield will increase with the increase of warming level. However, when DHW occurs, effective irrigation can mitigate the harm. Irrigation water can be sourced from various channels, including rainfall, diversion, and groundwater. These results provide scientific reference for sustainable agricultural production, drought risk and wheat meteorological disaster forecast in inland arid areas affected by climate change.

Keywords