Applied Sciences (Apr 2025)
The Impact of Laser Amplitude on the Radiation Characteristics of the Cross-Collision Between the Relativistic Electron and the Tightly Focused Linearly Polarized Laser
Abstract
Within the framework of classical dynamics, the impact of laser amplitude on the cross-collision between a linearly polarized intense laser pulse and a relativistic electron under tight focusing conditions was investigated via numerical simulation. As the laser amplitude intensifies, the z-axis oscillation trajectory of the electron elongates. The spatial radiation angular distribution of the electron transforms from a “hill shape” to a “comet shape”, and the radiation peak shifts toward the direction of smaller polar angle, with the radiation concentrating in the forward position. The time spectrum is symmetrical; the number of peaks is reduced from multiple peaks to three peaks; and the relative height of the main peak and secondary peaks increases, with the time distribution gradually concentrating, which can be regarded as an ultrashort attosecond single pulse. The spectrum exhibits a multi-peak distribution trend. When the laser amplitude is relatively strong, radiation with a more concentrated frequency range and better quality can be output. The above research findings are beneficial for generating X-rays of higher quality and can be applied in fields such as biomedicine and atomic physics.
Keywords