Bioactive Materials (Sep 2020)

Microstructure, mechanical property and corrosion behavior of porous Ti–Ta–Nb–Zr

  • B.Q. Li,
  • R.Z. Xie,
  • X. Lu

Journal volume & issue
Vol. 5, no. 3
pp. 564 – 568

Abstract

Read online

In this paper, biomedical porous Ti–Nb–Ta–Zr with 40% porosity and 166 ± 21 μm macro-pore size was successfully fabricated by space holder method. The microstructure, Vickers hardness, compressive and electrochemistry behavior were studied. It results that a few second phases exist in β matrix of the porous Ti–Nb–Ta–Zr. Its Young's modulus is 0.8 GPa, close to 0.01–3 GPa for trabecular bone. The total recovery strain ratio and pseudoelastic strain ratio are 8.8% and 2.7%, respectively. It fails mainly by brittle cleavage with the fan-shaped and smooth cleaved facets. Although, local ductile fracture by a few dimples and a small amount of transcrystalline fracture with the cleavage of similarly oriented laths in a colony are observed on the fracture surface. The impedance spectrum of porous Ti–Nb–Ta–Zr has the characteristics of half capacitive arc resistance, showing good corrosion resistance in SBF solution.

Keywords