PLoS ONE (Jan 2014)

Notoginsenoside R1 attenuates atherosclerotic lesions in ApoE deficient mouse model.

  • Chenglin Jia,
  • Minqi Xiong,
  • Peiwei Wang,
  • Jingang Cui,
  • Xiaoye Du,
  • Qinbo Yang,
  • Wenjian Wang,
  • Yu Chen,
  • Teng Zhang

DOI
https://doi.org/10.1371/journal.pone.0099849
Journal volume & issue
Vol. 9, no. 6
p. e99849

Abstract

Read online

AIMS: Atherosclerosis is the primary cause of cardiovascular diseases and stroke. The current study evaluated the interventional effects of a naturally occurring compound Notoginsenoside R1 (NR1) on atherosclerosis in ApoE-/- mice. METHODS AND RESULTS: The atherosclerotic lesion was significantly alleviated by NR1 treatment and this attenuation was marked by reduction in lipid deposition, fibrosis and oxidative stress. Increased serum levels of GSH and SOD and decreased level of MDH were observed in NR1-treated ApoE-/- mice. NR1 treatment also significantly decreased the levels of CHO, TG, ox-LDL and increased the level of HDL. Additionally, the levels of inflammatory cytokines including IL-2, IL-6, TNF-α and γ-IFN were markedly reduced in NR1-treated ApoE-/- mice. Furthermore, significantly increased aortic expression of miR-26a, miR-21, miR-126a, miR-132, miR-146 and miR-155 and decreased expression of miR-20a and miR-92a were observed in the vehicle-treated ApoE-/- mice. While NR1 treatment led to a significant reduction in the expression of miR-21, miR-26a, miR-126 and increased expression of miR-20a. CONCLUSION: Collectively, our results demonstrated for the first time the anti-atherosclerotic effects of NR1, which could be in part mediated through its multiple targeting effects on inflammation, oxidative stress, lipid metabolism and microRNA expression. These results therefore justify further evaluation of NR1 as a therapeutic agent treating atherosclerosis.