PLoS ONE (Jan 2015)

Transcriptional attenuation controls macrolide inducible efflux and resistance in Streptococcus pneumoniae and in other Gram-positive bacteria containing mef/mel(msr(D)) elements.

  • Scott T Chancey,
  • Xianhe Bai,
  • Nikhil Kumar,
  • Elliott F Drabek,
  • Sean C Daugherty,
  • Thomas Colon,
  • Sandra Ott,
  • Naomi Sengamalay,
  • Lisa Sadzewicz,
  • Luke J Tallon,
  • Claire M Fraser,
  • Hervé Tettelin,
  • David S Stephens

DOI
https://doi.org/10.1371/journal.pone.0116254
Journal volume & issue
Vol. 10, no. 2
p. e0116254

Abstract

Read online

Macrolide resistance, emerging in Streptococcus pneumoniae and other Gram-positive bacteria, is increasingly due to efflux pumps encoded by mef/mel(msr) operons found on discrete mobile genetic elements. The regulation of mef/mel(msr) in these elements is not well understood. We identified the mef(E)/mel transcriptional start, localized the mef(E)/mel promoter, and demonstrated attenuation of transcription as a mechanism of regulation of macrolide-inducible mef-mediated macrolide resistance in S. pneumoniae. The mef(E)/mel transcriptional start site was a guanine 327 bp upstream of mef(E). Consensus pneumococcal promoter -10 (5'-TATACT-3') and -35 (5'-TTGAAC-3') boxes separated by 17 bp were identified 7 bp upstream of the start site. Analysis of the predicted secondary structure of the 327 5' region identified four pairs of inverted repeats R1-R8 predicted to fold into stem-loops, a small leader peptide [MTASMRLR, (Mef(E)L)] required for macrolide induction and a Rho-independent transcription terminator. RNA-seq analyses provided confirmation of transcriptional attenuation. In addition, expression of mef(E)L was also influenced by mef(E)L-dependent mRNA stability. The regulatory region 5' of mef(E) was highly conserved in other mef/mel(msr)-containing elements including Tn1207.1 and the 5612IQ complex in pneumococci and Tn1207.3 in Group A streptococci, indicating a regulatory mechanism common to a wide variety of Gram-positive bacteria containing mef/mel(msr) elements.