Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (Sep 2017)

ALTERNATIVE TERMINATION CRITERION FOR K-SPECIFIED CRISP DATA CLUSTERING ALGORITHMS

  • Volodymyr Mosorov,
  • Taras Panskyi,
  • Sebastian Biedron

DOI
https://doi.org/10.5604/01.3001.0010.5216
Journal volume & issue
Vol. 7, no. 3

Abstract

Read online

In this paper the analysis of k-specified (namely k-means) crisp data partitioning pre-clustering algorithm’s termination criterion performance is described. The results have been analyzed using the clustering validity indices. Termination criterion allows analyzing data with any number of clusters. Moreover, introduced criterion in contrast to the known validity indices enables to analyze data that make up one cluster.

Keywords