PLoS ONE (Jan 2017)

Influence of heat stress, sex and genetic groups on reference genes stability in muscle tissue of chicken.

  • Haniel Cedraz de Oliveira,
  • Antonio Amandio Pinto Garcia,
  • Juliana Gracielle Gonzaga Gromboni,
  • Ronaldo Vasconcelos Farias Filho,
  • Carlos Souza do Nascimento,
  • Amauri Arias Wenceslau

DOI
https://doi.org/10.1371/journal.pone.0176402
Journal volume & issue
Vol. 12, no. 5
p. e0176402

Abstract

Read online

Quantitative RT-PCR is an important technique for assessing gene expression. However, a proper normalization of reference genes prior to expression analyses of target genes is necessary. The best normalizer is that gene which remains stable in all samples from different treatments. The aim of this study was to identify stable reference genes for normalization of target genes in muscle tissue from three genetically divergent chickens groups (Peloco, Cobb 500® and Caneluda) under environmental (heat stress and comfort) and sex influence. Expressions of ten reference genes were tested for stability in breast muscular tissue (Pectoralis major muscle). Samples were obtained from 36 males and females of two backyard breeds (Caneluda and Peloco) and one commercial line (Cobb 500®) under two environments. The heat stress and comfort temperature were 39 and 23°C, respectively. Animals were housed in the Animal Science Department at Universidade Estadual do Sudoeste da Bahia. We analyzed the expression data by four statistical tools (SLqPCR, NormFinder, Bestkeeper and Comparative CT). According to these tools, genes stability varied according to sex, genetic group and environment, however, some genes remained stable in all analyzes. There was no difference between the most stable genes for sex effect, being MRPS27 more stable for both males and females. In general, MRPS27 was the most stable gene. Within the three genetic groups, the most stable genes were RPL5, HMBS and EEF1 to Cobb 500®, Peloco and Caneluda, respectively. Within the environment, the most stable gene under comfort and heat stress conditions was HMBS and MRPS27, respectively. BestKeeper and Comparative Ct were less correlated (28%) and SLqPCR and NormFinder were the most correlated (98%). MRPS27, RPL5 and MRPS30 genes were considered stable according the overall ranking and can be used as normalizer of relative expression of target genes in muscle tissue of chickens under heat stress.