Fluids (Sep 2022)

Rational Solitons in the Gardner-Like Models

  • Efim Pelinovsky,
  • Tatiana Talipova,
  • Ekaterina Didenkulova

DOI
https://doi.org/10.3390/fluids7090294
Journal volume & issue
Vol. 7, no. 9
p. 294

Abstract

Read online

Rational solutions of nonlinear evolution equations are considered in the literature as a mathematical image of rogue waves, which are anomalously large waves that occur for a short time. In this work, bounded rational solutions of Gardner-type equations (the extended Korteweg-de Vries equation), when a nonlinear term can be represented as a sum of several terms with arbitrary powers (not necessarily integer ones), are found. It is shown that such solutions describe first-order algebraic solitons, kinks, and pyramidal and table-top solitons. Analytical solutions are obtained for the Gardner equation with two nonlinear terms, the powers of which differ by a factor of 2. In other cases, the solutions are obtained numerically. Gardner-type equations occur in the description of nonlinear wave dynamics in a fluid layer with continuous or multilayer stratification, as well as in multicomponent plasma, and their solutions are used for the interpretation of rogue waves.

Keywords