Diagnostics (Apr 2023)

Multimodality Medical Image Fusion Using Clustered Dictionary Learning in Non-Subsampled Shearlet Transform

  • Manoj Diwakar,
  • Prabhishek Singh,
  • Ravinder Singh,
  • Dilip Sisodia,
  • Vijendra Singh,
  • Ankur Maurya,
  • Seifedine Kadry,
  • Lukas Sevcik

DOI
https://doi.org/10.3390/diagnostics13081395
Journal volume & issue
Vol. 13, no. 8
p. 1395

Abstract

Read online

Imaging data fusion is becoming a bottleneck in clinical applications and translational research in medical imaging. This study aims to incorporate a novel multimodality medical image fusion technique into the shearlet domain. The proposed method uses the non-subsampled shearlet transform (NSST) to extract both low- and high-frequency image components. A novel approach is proposed for fusing low-frequency components using a modified sum-modified Laplacian (MSML)-based clustered dictionary learning technique. In the NSST domain, directed contrast can be used to fuse high-frequency coefficients. Using the inverse NSST method, a multimodal medical image is obtained. Compared to state-of-the-art fusion techniques, the proposed method provides superior edge preservation. According to performance metrics, the proposed method is shown to be approximately 10% better than existing methods in terms of standard deviation, mutual information, etc. Additionally, the proposed method produces excellent visual results regarding edge preservation, texture preservation, and more information.

Keywords