Broadband spatial self-phase modulation and ultrafast response of MXene Ti3C2Tx (T=O, OH or F)
Li Jie,
Zhang Zilong,
Yi Jun,
Miao Lili,
Huang Jing,
Zhang Jinrui,
He Yuan,
Huang Bin,
Zhao Chujun,
Zou Yanhong,
Wen Shuangchun
Affiliations
Li Jie
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Zhang Zilong
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Yi Jun
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Miao Lili
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Huang Jing
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Zhang Jinrui
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
He Yuan
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Huang Bin
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Zhao Chujun
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Zou Yanhong
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Wen Shuangchun
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Two-dimensional layered materials (2DLM) have become the subject of intensive research in various applications such as electronics, photonics and optoelectronics due to their unique physical properties. As a new class of 2DLM, MXenes have attracted great interest due to their superior performance in a wide variety of applications such as batteries, supercapacitors, catalysts, electronics and optics. Here, we have investigated the broadband spatial self-phase modulation (SSPM) and ultrafast response of the MXene Ti3C2Tx (T=O, OH or F) experimentally. The MXene Ti3C2Tx exhibited the broadband nonlinear optical response via SSPM from 400 nm to ~1 μm under the ultrafast laser excitation, and ultrafast carrier characteristics with an ultrafast recovery time with femtosecond transient absorption spectroscopy. The experimental results have shown that the MXenes have the broadband nonlinear optical response, which can lay a foundation for the application prospect for the MXene-based ultrafast optoelectronic devices.