Proteome Science (Feb 2022)

Identification and validation of serum autoantibodies in children with B-cell acute lymphoblastic leukemia by serological proteome analysis

  • Runhong Yu,
  • Shiwei Yang,
  • Yufeng Liu,
  • Zunmin Zhu

DOI
https://doi.org/10.1186/s12953-021-00184-w
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy of childhood. Even though significant progresses have been made in the treatment of B-ALL, some pediatric B-ALL have still poor prognosis. The identification of tumor autoantibodies may have utility in early cancer diagnosis and immunotherapy. In this study, we used serological proteome analysis (SERPA) to screen serum autoantibodies of pediatric B-ALL, aiming to contribute to the early detection of B-ALL in children. Methods The total proteins from three pooled B-ALL cell lines (NALM-6, REH and BALL-1 cells) were separated using two-dimensional gel electrophoresis (2-DE), which was followed by Western blot by mixed serum samples from children with B-ALL (n=20) or healthy controls (n=20). We analyzed the images of 2-D gel and Western blot by PDQuest software, and then identified the spots of immune responses in B-ALL samples compared with those in control samples. The proteins from spots were identified using mass spectrometry (MS). The autoantibodies against alpha-enolase (α-enolase) and voltage-dependent anion-selective channel protein 1 (VDAC1) were further validated in sera from another 30 children with B-ALL and 25 normal individuals by the use of enzyme-linked immunosorbent assay (ELISA). The protein expression levels of the candidate antigens α-enolase and VDAC1 in B-ALL were thoroughly studied by immunohistochemical analysis. Results Utilizing the SERPA approach, α-enolase and VDAC1 were identified as candidate autoantigens in children with B-ALL. The frequencies of autoantibodies against α-enolase and VDAC1 in children with B-ALL were 27% and 23% by using ELISA analysis, respectively, which were significantly higher than those in normal controls (4% and 0, p<0.05). Immunohistochemical analysis showed the expression of α-enolase and VDAC1 was positive in 95% and 85% of B-ALL patients, respectively, but negative expression levels were showed in the control group. Conclusions This study incidated that α-enolase and VDAC1 may be the autoantigens associated with B-ALL. Therefore, α-enolase and VDAC1 autoantibodies may be the potential serological markers for children with B-ALL.

Keywords