Neural Regeneration Research (Jan 2022)

Role of adipose tissue grafting and adipose-derived stem cells in peripheral nerve surgery

  • Tiam M Saffari,
  • Sara Saffari,
  • Krishna S Vyas,
  • Samir Mardini,
  • Alexander Y Shin

DOI
https://doi.org/10.4103/1673-5374.336870
Journal volume & issue
Vol. 17, no. 10
pp. 2179 – 2184

Abstract

Read online

The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form. This review aims to provide an overview of the scientific evidence on the biology of adipose tissue, the role of adipose-derived stem cells, and the indications of adipose tissue grafting in peripheral nerve surgery. Adipose tissue is easily accessible through the lower abdomen and inner thighs. Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress, resulting in variable survival of adipocytes within the first 24 hours. Enrichment of adipose tissue with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells and is postulated to augment the long-term stability of adipose tissue grafts. Basic science nerve research suggests an increase in nerve regeneration and nerve revascularization, and a decrease in nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue. In clinical studies, the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with promising results. Since the use of adipose-derived stem cells in peripheral nerve reconstruction is relatively new, more studies are needed to explore safety and long-term effects on peripheral nerve regeneration. The Food and Drug Administration stipulates that adipose-derived stem cell transplantation should be minimally manipulated, enzyme-free, and used in the same surgical procedure, e.g. adipose tissue grafts that contain native adipose-derived stem cells or stromal vascular fraction. Future research may be shifted towards the use of tissue-engineered adipose tissue to create a supportive microenvironment for autologous graft survival. Shelf-ready alternatives could be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose tissue harvest.

Keywords