Aerospace (May 2023)

Experimental Analysis of Rotor Blade Noise in Edgewise Turbulence

  • Nur Syafiqah Jamaluddin,
  • Alper Celik,
  • Kabilan Baskaran,
  • Djamel Rezgui,
  • Mahdi Azarpeyvand

DOI
https://doi.org/10.3390/aerospace10060502
Journal volume & issue
Vol. 10, no. 6
p. 502

Abstract

Read online

This paper presents an experimental investigation into the effects of turbulence ingestion on the aerodynamic noise characteristics of rotor blades in edgewise flight. A small-scaled, two-bladed rotor was used in the study. The test utilised two turbulence-generating grids, to generate turbulence inflows with different characteristics, and to compare them to the baseline configuration of the laminar inflow. The experiments were set at forwarding edgewise flight configuration, with freestream inflow velocity ranging from 10 m/s to 22 m/s. Simultaneous measurements of far-field acoustic pressure and load were conducted, along with a separate flow measurement using particle image velocimetry. The acoustic spectra demonstrated a larger contribution to the tonal noise radiation at blade passing frequency, and to the broadband noise radiation at the mid-frequency domain, due to turbulence ingestion. However, the broadband responses in the high-frequency domain were comparable between the tested laminar and turbulence inflow cases, with similar broadband humps featuring in the acoustic spectra. The directivity patterns of the overall sound pressure level showed that the noise radiation was lowest near the plane of rotation, and highest downstream. Turbulence ingestion effects could also be seen in the elevated noise levels throughout the observation positions for the grid inflow cases, particularly at larger advance ratios.

Keywords