Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities
Swapnesh Panigrahi,
Dorothée Murat,
Antoine Le Gall,
Eugénie Martineau,
Kelly Goldlust,
Jean-Bernard Fiche,
Sara Rombouts,
Marcelo Nöllmann,
Leon Espinosa,
Tâm Mignot
Affiliations
Swapnesh Panigrahi
CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
Antoine Le Gall
Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellie, Marseille, France
Eugénie Martineau
CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
Kelly Goldlust
CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
Jean-Bernard Fiche
Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellie, Marseille, France
Sara Rombouts
Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellie, Marseille, France
Marcelo Nöllmann
Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellie, Marseille, France
CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.