Journal of Marine Science and Engineering (May 2020)
Field Investigations of Underwater Mounds Formed by Hopper Dredge Discharges in a Coastal Environment
Abstract
In a coastal environment, this paper investigated the formation process and the cumulative shape of subaqueous mounds formed by hopper dredged discharges. Hydrological observations and field tests were performed to examine the flow features and ultimately generated morphology characteristics. A high-precision digital elevation model (DEM) was established by multi-beam depth sweeping (MBDS) in the experiment. Particular attention was paid to the formation of the mounds, the three-dimensional shape and the influence factors. The field measurements showed that the mounds were roughly symmetrical in space, and the tidal current, though of weak strength, played a certain role in shaping the profiles. Cone and volcanic cone mound tops were observed, featuring the main top shapes. The height and covered area of the mounds were proportional to the amount of dumped sediment, and they were also affected a lot by the water depth. The results of superimposed tests showed that the second placement over the existing mound resulted in a similar overall shape, but there was pronounced movement around the mound; additional discharged volumes at the same location mainly increased the mound height. The field tests provided a reference for understanding the sediment dumping in other similar coastal areas.
Keywords