Heliyon (Jun 2021)
EEG signal analysis using classification techniques: Logistic regression, artificial neural networks, support vector machines, and convolutional neural networks
Abstract
Epilepsy is a brain abnormality that leads its patients to suffer from seizures, which conditions their behavior and lifestyle. Neurologists use an electroencephalogram (EEG) to diagnose this disease. This test illustrates the signaling behavior of a person's brain, allowing, among other things, the diagnosis of epilepsy. From a visual analysis of these signals, neurologists identify patterns such as peaks or valleys, looking for any indication of brain disorder that leads to the diagnosis of epilepsy in a purely qualitative way. However, by applying a test based on Fourier signal analysis through rapid transformation in the frequency domain, patterns can be quantitatively identified to differentiate patients diagnosed with the disease and others who are not. In this article, an analysis of the EEG signal is performed to extract characteristics in patients already classified as epileptic and non-epileptic, which will be used in the training of models based on classification techniques such as logistic regression, artificial neural networks, support vector machines, and convolutional neural networks. Based on the results obtained with each technique, an analysis is performed to decide which of these behaves better.In this study traditional classification techniques were implemented that had as data frequency data in the channels with distinctive information of EEG examinations, this was done through a feature extraction obtained with Fourier analysis considering frequency bands. The techniques used for classification were implemented in Python and through a comparison of metrics and performance, it was concluded that the best classification technique to characterize epileptic patients are artificial neural networks with an accuracy of 86%.