BMC Genomics (Feb 2009)

Synteny of <it>Prunus </it>and other model plant species

  • Abbott Albert,
  • Lee Taein,
  • Cho Ilhyung,
  • Jiwan Derick,
  • Jung Sook,
  • Sosinski Bryon,
  • Main Dorrie

DOI
https://doi.org/10.1186/1471-2164-10-76
Journal volume & issue
Vol. 10, no. 1
p. 76

Abstract

Read online

Abstract Background Fragmentary conservation of synteny has been reported between map-anchored Prunus sequences and Arabidopsis. With the availability of genome sequence for fellow rosid I members Populus and Medicago, we analyzed the synteny between Prunus and the three model genomes. Eight Prunus BAC sequences and map-anchored Prunus sequences were used in the comparison. Results We found a well conserved synteny across the Prunus species – peach, plum, and apricot – and Populus using a set of homologous Prunus BACs. Conversely, we could not detect any synteny with Arabidopsis in this region. Other peach BACs also showed extensive synteny with Populus. The syntenic regions detected were up to 477 kb in Populus. Two syntenic regions between Arabidopsis and these BACs were much shorter, around 10 kb. We also found syntenic regions that are conserved between the Prunus BACs and Medicago. The array of synteny corresponded with the proposed whole genome duplication events in Populus and Medicago. Using map-anchored Prunus sequences, we detected many syntenic blocks with several gene pairs between Prunus and Populus or Arabidopsis. We observed a more complex network of synteny between Prunus-Arabidopsis, indicative of multiple genome duplication and subsequence gene loss in Arabidopsis. Conclusion Our result shows the striking microsynteny between the Prunus BACs and the genome of Populus and Medicago. In macrosynteny analysis, more distinct Prunus regions were syntenic to Populus than to Arabidopsis.