Investigation of a Gaussian Plume in the Vicinity of an Urban Cyclotron Using Helium as a Tracer Gas
Philippe Laguionie,
Olivier Connan,
Thinh Lai Tien,
Sophie Vecchiola,
Johann Chardeur,
Olivier Cazimajou,
Luc Solier,
Perrine Charvolin-Volta,
Liying Chen,
Irène Korsakissok,
Malo Le Guellec,
Lionel Soulhac,
Amita Tripathi,
Denis Maro
Affiliations
Philippe Laguionie
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRC, 50130 Cherbourg-en-Cotentin, France
Olivier Connan
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRC, 50130 Cherbourg-en-Cotentin, France
Thinh Lai Tien
Vietnam Agency for Radiation and Nuclear Safety (VARANS), Ha Noi City 122000, Vietnam
Sophie Vecchiola
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEREN/BERAP, 92260 Fontenay-aux-Roses, France
Johann Chardeur
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRC, 50130 Cherbourg-en-Cotentin, France
Olivier Cazimajou
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRC, 50130 Cherbourg-en-Cotentin, France
Luc Solier
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRC, 50130 Cherbourg-en-Cotentin, France
Perrine Charvolin-Volta
Laboratoire de Mécanique des Fluides et d’Acoustique, University of Lyon, CNRS UMR 5509, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard, 69134 Ecully, France
Liying Chen
FLUIDYN France, 93200 Saint-Denis, France
Irène Korsakissok
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESUC/BMCA, 92260 Fontenay-aux-Roses, France
Malo Le Guellec
FLUIDYN France, 93200 Saint-Denis, France
Lionel Soulhac
Laboratoire de Mécanique des Fluides et d’Acoustique, University of Lyon, CNRS UMR 5509, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard, 69134 Ecully, France
Amita Tripathi
FLUIDYN France, 93200 Saint-Denis, France
Denis Maro
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRC, 50130 Cherbourg-en-Cotentin, France
Studies focusing on the radiological impact of fluorine 18 on populations living near to cyclotrons (<200 m) frequently assume normal distribution of atmospheric concentration for simplification purposes. On this basis, Gaussian models are used, despite their limits, as deployment requires little input data and computing resources. To estimate the ability of a Gaussian model to predict atmospheric dispersion in an urban environment, we used helium as a new passive tracer of atmospheric dispersion in the near-field range (<500 m) of the Beuvry hospital cyclotron (France). The atmospheric transfer coefficients measured in the field were compared with those modeled using a Gaussian equation. According to the results, helium is an effective tracer of atmospheric dispersion when attempting to determine atmospheric transfer coefficients ( downwind of a discharge point. The Briggs-rural, Briggs-urban and Doury Gaussian models underestimate and sometimes maximum in the prevailing weather conditions during the experiments. By compiling the results of this study with data from the literature, it appears that the maximum observed obey a power law as a function of the distance from the discharge point, for distances from the discharge point in excess of 20 m.