Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids
Joachim Allouche,
Corinne Chanéac,
Roberta Brayner,
Michel Boissière,
Thibaud Coradin
Affiliations
Joachim Allouche
Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Centre National de Recherche Scientifique (CNRS), Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254, Equipe de Chimie Physique (ECP), Technopôle Hélioparc Pau Pyrénées 2 avenue du Président Pierre Angot, PAU, 64053 Cedex 09, France
Corinne Chanéac
Chimie de la Matière Condensée de Paris, UMR 7574, Université Pierre et Marie Curie, Bât F, 4 place Jussieu, and Collège de France, 11 place Marcelin Berthelot, Paris 75005, France
Roberta Brayner
Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), Université Paris Diderot, UMR-CNRS 7086, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, Paris, 75205 Cedex 13, France
Michel Boissière
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe) EA 1391, Université de Cergy Pontoise–UFR Sciences et Techniques, 2 avenue Adolphe Chauvin BP222, Cergy Pontoise, 95302 Cedex, France
Thibaud Coradin
Chimie de la Matière Condensée de Paris, UMR 7574, Université Pierre et Marie Curie, Bât F, 4 place Jussieu, and Collège de France, 11 place Marcelin Berthelot, Paris 75005, France
The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms.