Cell Reports (Jul 2024)

Neocortical inhibitory imbalance predicts successful sensory detection

  • Christopher A. Deister,
  • Alexander I. Moore,
  • Jakob Voigts,
  • Sophia Bechek,
  • Rebecca Lichtin,
  • Tyler C. Brown,
  • Christopher I. Moore

Journal volume & issue
Vol. 43, no. 7
p. 114233

Abstract

Read online

Summary: Perceptual success depends on fast-spiking, parvalbumin-positive interneurons (FS/PVs). However, competing theories of optimal rate and correlation in pyramidal (PYR) firing make opposing predictions regarding the underlying FS/PV dynamics. We addressed this with population calcium imaging of FS/PVs and putative PYR neurons during threshold detection. In primary somatosensory and visual neocortex, a distinct PYR subset shows increased rate and spike-count correlations on detected trials (“hits”), while most show no rate change and decreased correlations. A larger fraction of FS/PVs predicts hits with either rate increases or decreases. Using computational modeling, we found that inhibitory imbalance, created by excitatory “feedback” and interactions between FS/PV pools, can account for the data. Rate-decreasing FS/PVs increase rate and correlation in a PYR subset, while rate-increasing FS/PVs reduce correlations and offset enhanced excitation in PYR neurons. These findings indicate that selection of informative PYR ensembles, through transient inhibitory imbalance, is a common motif of optimal neocortical processing.

Keywords