Kaohsiung Journal of Medical Sciences (Feb 2017)

Evaluation of mechanical strengths of three types of mini-implants in artificial bones

  • Yu-Chuan Tseng,
  • Ju-Hui Wu,
  • Chun-Chan Ting,
  • Hong-Sen Chen,
  • Chun-Ming Chen

DOI
https://doi.org/10.1016/j.kjms.2016.11.001
Journal volume & issue
Vol. 33, no. 2
pp. 96 – 101

Abstract

Read online

We investigates the effect of the anchor area on the mechanical strengths of infrazygomatic mini-implants. Thirty mini-implants were divided into three types based on the material and shape: Type A (titanium alloy, 2.0×12 mm), Type B (stainless steel, 2.0×12 mm), and Type C (titanium alloy, 2.0×11 mm).The mini-implants were inserted at 90° and 45° into the artificial bone to a depth of 7 mm, without predrilling. The mechanical strengths [insertion torque (IT), resonance frequency (RF), and removal torque (RT)] and the anchor area were measured. We hypothesized that no correlation exists among the mechanical forces of each brand. In the 90° tests, the IT, RF, and RT of Type C (8.5 N cm, 10.2 kHz, and 6.1 N cm, respectively) were significantly higher than those of Type A (5.0 N cm, 7.7 kHz, and 4.7 N cm, respectively). In the 45° test, the RFs of Type C (9.2 kHz) was significantly higher than those of Type A (7.0 kHz) and Type B (6.7 kHz). The anchor area of the mini-implants was in the order of Type C (706 mm2)>Type B (648 mm2)>Type A (621 mm2). Type C exhibited no significant correlation in intragroup comparisons, and the hypothesis was accepted. In the 90° and 45° tests, Type C exhibited the largest anchor area and the highest mechanical strengths (IT, RF, and RT) among the three types of mini-implants. The anchor area plays a crucial role in the mechanical strength of mini-implants.

Keywords