Materials (Mar 2023)

Probing the Interplay between Mo Back Contact Layer Deposition Condition and MoSe<sub>2</sub> Layer Formation at the CIGSe/Mo Hetero-Interface

  • Fazliyana ‘Izzati Za’abar,
  • Ahmad Wafi Mahmood Zuhdi,
  • Camellia Doroody,
  • Puvaneswaran Chelvanathan,
  • Yulisa Yusoff,
  • Siti Fazlili Abdullah,
  • Mohd. Shaparuddin Bahrudin,
  • Wan Sabeng Wan Adini,
  • Ibrahim Ahmad,
  • Wan Syakirah Wan Abdullah,
  • Nowshad Amin

DOI
https://doi.org/10.3390/ma16062497
Journal volume & issue
Vol. 16, no. 6
p. 2497

Abstract

Read online

The effect of Mo thin film deposition power in DC sputtering on the formation of a MoSe2 interfacial layer grown via the annealing of CIGSe/Mo precursors in an Se-free atmosphere was investigated. A Mo layer was deposited on glass substrates using the DC magnetron sputtering method. Its electrical resistivity, as well as its morphological, structural, and adhesion characteristics, were analyzed regarding the deposition power. In the case of thinner films of about 300 nm deposited at 80 W, smaller grains and a lower volume percentage of grain boundaries were found, compared to 510 nm thick film with larger agglomerates obtained at 140 W DC power. By increasing the deposition power, in contrast, the conductivity of the Mo film significantly improved with lowest sheet resistance of 0.353 Ω/square for the sample deposited at 140 W. Both structural and Raman spectroscopy outputs confirmed the pronounced formation of MoSe2, resulting from Mo films with predominant (110) orientated planes. Sputtered Mo films deposited at 140 W power improved Mo crystals and the growth of MoSe2 layers with a preferential (103) orientation upon the Se-free annealing. With a more porous Mo surface structure for the sample deposited at higher power, a larger contact area developed between the Mo films and the Se compound was found from the CIGSe film deposited on top of the Mo, favoring the formation of MoSe2. The CIGSe/Mo hetero-contact, including the MoSe2 layer with controlled thickness, is not Schottky-type, but a favourable ohmic-type, as evaluated by the dark I-V measurement at room temperature (RT). These findings support the significance of regulating the thickness of the unintentional MoSe2 layer growth, which is attainable by controlling the Mo deposition power. Furthermore, while the adhesion between the CIGSe absorber layer and the Mo remains intact, the resistance of final devices with the Ni/CIGSe/Mo structure was found to be directly linked to the MoSe2 thickness. Consequently, it addresses the importance of MoSe2 structural properties for improved CIGSe solar cell performance and stability.

Keywords