大数据 (Jul 2024)
一种双通道半监督网络表示学习模型
Abstract
在半监督网络表示学习中,节点标签对于网络在不同空间中映射关系的建立具有重要指导意义。然而在很多实际任务中,可用标签信息往往比较有限或难以获取,这导致在学习网络低维表示的过程中无法提供充分有效的监督。针对这一问题,提出了一种双通道半监督网络表示学习模型,该模型以自编码器为基本框架,由自监督和半监督两个信息传递通道构成。自监督信号与标签信息分别在两个通道中对网络表示映射关系的建立提供指导,同时二者之间形成信息互补与增强。考虑到两个通道间可能存在信息冗余,在互信息视角下设计了冗余识别与消除机制。在此基础上,构造了一体化优化模型,实现自监督学习与半监督学习的协同,使学习到的网络表示更好地捕捉和保持网络的结构和特性。在真实数据集上的实验结果表明,提出的模型学习的网络表示在节点分类、聚类和可视化等任务中能够获得优于基线方法的性能。
Keywords