BMC Psychiatry (Nov 2007)
Auditory target processing in methadone substituted opiate addicts: The effect of nicotine in controls
Abstract
Abstract Background The P300 component of the auditory evoked potential is an indicator of attention dependent target processing. Only a few studies have assessed cognitive function in substituted opiate addicts by means of evoked potential recordings. In addition, P300 data suggest that chronic nicotine use reduces P300 amplitudes. While nicotine and opiate effects combine in addicted subjects, here we investigated the P300 component of the auditory event related potential in methadone substituted opiate addicts with and without concomitant non-opioid drug use in comparison to a group of control subjects with and without nicotine consumption. Methods We assessed 47 opiate addicted out-patients under current methadone substitution and 65 control subjects matched for age and gender in an 2-stimulus auditory oddball paradigm. Patients were grouped for those with and without additional non-opioid drug use and controls were grouped for current nicotine use. P300 amplitude and latency data were analyzed at electrodes Fz, Cz and Pz. Results Patients and controls did not differ with regard to P300 amplitudes and latencies when whole groups were compared. Subgroup analyses revealed significantly reduced P300 amplitudes in controls with nicotine use when compared to those without. P300 amplitudes of methadone substituted opiate addicts were in between the two control groups and did not differ with regard to additional non-opioid use. Controls with nicotine had lower P300 amplitudes when compared to patients with concomitant non-opioid drugs. No P300 latency effects were found. Conclusion Attention dependent target processing as indexed by the P300 component amplitudes and latencies is not reduced in methadone substituted opiate addicts when compared to controls. The effect of nicotine on P300 amplitudes in healthy subjects exceeds the effects of long term opioid addiction under methadone substitution.