Journal of Pure and Applied Microbiology (Sep 2021)
Screening of Epidemiologically Significant Mechanisms of Antibiotics to β-Lactams in Enterobacteriaceae - Pathogens of Zoonoses
Abstract
Among the acquired mechanisms of resistance to antibiotics of microorganisms, the production of beta-lactamases, enzymes that inactivate penicillins, cephalosporins, carbapenems, and monobactams, is widespread. Most often, such beta-lactamases, in particular ESBL (extended-spectrum beta-lactamases), are capable of destroying III and IV generations of cephalosporins. One of the important ESBL producers is Escherichia coli and, to a lesser extent, Salmonella enteritidis, which are clinically significant in animals and humans. The purpose of the study was to screen ESBL DDM using cephalosporin markers and screening of mobile extrachromosomal factors of bacterial heredity – plasmids (potentially dangerous factors of genetic transport) in isolates of E. coli and S. enteritidis, polyresistant to aminoderms, from environmental objects, patho- and biological material, raw materials and products of animal origin. Results of our studies have shown the level of their distribution among animals, poultry, since from 13 field isolates of E. coli isolated from the milk of cows with mastitis and pathological material from pigs, ESBL production was found in 3 strains (23.1%) and from 18 field isolates of S. enteritidis isolated from pathological material from poultry, ESBL production was found in 2 strains (11.1%). Based on the results of molecular genetics studies, the presence of resistance plasmids (R-plasmids) in 9 field E. coli isolates was confirmed, 4 of which produced acquired beta-lactamases, incl. ESBL and 8 field isolates of S. enteritidis, 7 of which confirmed the presence of acquired carbapenemases.
Keywords