Wide Bandwidth and Inexpensive Current Sensor for Power Electronics—An Augmented LEM Current Sensor
Maciej Chojowski,
Aleksander Dziadecki,
Marcin Baszyński,
Roman Dudek,
Andrzej Stobiecki,
Józef Skotniczny
Affiliations
Maciej Chojowski
Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Aleksander Dziadecki
Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Marcin Baszyński
Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Roman Dudek
Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Andrzej Stobiecki
Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Józef Skotniczny
Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
This paper presents the overall concept of a wideband and cost-effective current sensor. The sensor consists of a paralleled Hall-based current sensor (LEM) and a wideband current transformer (CT). A significant improvement of the band range and the moderate cost of the proposed sensor enable it to be used both to measure the instantaneous value in order to precisely plot the current and to obtain signals for a closed-loop control system of high-frequency power electronic converters. The sensor should be considered as an Augmented LEM Current Sensor (ALCS), which allows it to measure low- and high-frequency current signals. Finally, it allows for the measurement of a bipolar current up to 40 A. The overall cost of the sensor, along with the previously mentioned benefits, is an important feature of the proposed sensor. The present paper presents the analytical concept of the sensor (ALCS), a theoretical approach using simulation analysis, and the experimental results, which clearly demonstrate the wide range of the sensor in dynamic and static measurements.