Inorganics (Jan 2024)

Ferrocene-Bearing Homoleptic and Heteroleptic Paddlewheel-Type Dirhodium Complexes

  • Yusuke Kataoka,
  • Kozo Sato,
  • Natsumi Yano,
  • Makoto Handa

DOI
https://doi.org/10.3390/inorganics12020041
Journal volume & issue
Vol. 12, no. 2
p. 41

Abstract

Read online

Two ferrocenecarboxylate (fca)-bridged dirhodium (Rh2) complexes, [Rh2(fca)4] (1) and [Rh2(fca)(piv)3] (2; piv = pivalate), were prepared through the carboxylate-exchange reactions of [Rh2(O2CCH3)4(H2O)2] and [Rh2(piv)4], respectively, with fcaH and characterized by 1H NMR, ESI-TOF-MS, and elemental analyses. Single-crystal X-ray diffraction analyses of [Rh2(fca)4(MeOH)2] (1(MeOH)2) and [Rh2(fca)(piv)3(MeOH)2] (2(MeOH)2), which are recrystallized from MeOH-containing solutions of 1 and 2, revealed that (1) 1(MeOH)2 and 2(MeOH)2 possess homoleptic and heteroleptic paddlewheel-type dinuclear structures, respectively; (2) both complexes have a single Rh–Rh bond (2.3771(3) Å for 1(MeOH)2, 2.3712(3) Å for 2(MeOH)2); and (3) the cyclopentadienyl rings of the fca ligands in 1(MeOH)2 adopt an eclipsed conformation, whereas those in 2(MeOH)2 are approximately 12–14° rotated from the staggered conformation. Density functional theory (DFT) calculations revealed that (1) the electronic configurations of the Rh2 core in 1(MeOH)2 and 2(MeOH)2 are π4σ2δ2π*2δ*2π*2 and π4σ2δ2δ*2π*4, respectively; and (2) the occupied molecular orbitals (MOs) localized on the fca ligands are energetically degenerate and relatively more unstable than those on the Rh2 cores. Absorption features and electrochemical properties of 1 and 2 were investigated in a 9:1 CHCl3-MeOH solution and compared with those of fcaH and [Rh2(piv)4]. Through examining the obtained results in detail using time-dependent DFT (TDDFT) and unrestricted DFT, we found that 1 and 2 exhibit charge transfer excitations between the fca ligands and Rh2 cores, and 1 shows electronic interactions between ferrocene units through the Rh2 core in the electrochemical oxidation process.

Keywords