Nature Communications (Jan 2025)

Stable laser-acceleration of high-flux proton beams with plasma collimation

  • M. J. V. Streeter,
  • G. D. Glenn,
  • S. DiIorio,
  • F. Treffert,
  • B. Loughran,
  • H. Ahmed,
  • S. Astbury,
  • M. Borghesi,
  • N. Bourgeois,
  • C. B. Curry,
  • S. J. D. Dann,
  • N. P. Dover,
  • T. Dzelzainis,
  • O. C. Ettlinger,
  • M. Gauthier,
  • L. Giuffrida,
  • S. H. Glenzer,
  • R. J. Gray,
  • J. S. Green,
  • G. S. Hicks,
  • C. Hyland,
  • V. Istokskaia,
  • M. King,
  • D. Margarone,
  • O. McCusker,
  • P. McKenna,
  • Z. Najmudin,
  • C. Parisuaña,
  • P. Parsons,
  • C. Spindloe,
  • D. R. Symes,
  • A. G. R. Thomas,
  • N. Xu,
  • C. A. J. Palmer

DOI
https://doi.org/10.1038/s41467-025-56248-4
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Laser-plasma acceleration of protons offers a compact, ultra-fast alternative to conventional acceleration techniques, and is being widely pursued for potential applications in medicine, industry and fundamental science. Creating a stable, collimated beam of protons at high repetition rates presents a key challenge. Here, we demonstrate the generation of multi-MeV proton beams from a fast-replenishing ambient-temperature liquid sheet. The beam has an unprecedentedly low divergence of 1° (≤20 mrad), resulting from magnetic self-guiding of the proton beam during propagation through a low density vapour. The proton beams, generated at a repetition rate of 5 Hz using only 190 mJ of laser energy, exhibit a hundred-fold increase in flux compared to beams from a solid target. Coupled with the high shot-to-shot stability of this source, this represents a crucial step towards applications.