Nature Communications (Jan 2025)
Stable laser-acceleration of high-flux proton beams with plasma collimation
- M. J. V. Streeter,
- G. D. Glenn,
- S. DiIorio,
- F. Treffert,
- B. Loughran,
- H. Ahmed,
- S. Astbury,
- M. Borghesi,
- N. Bourgeois,
- C. B. Curry,
- S. J. D. Dann,
- N. P. Dover,
- T. Dzelzainis,
- O. C. Ettlinger,
- M. Gauthier,
- L. Giuffrida,
- S. H. Glenzer,
- R. J. Gray,
- J. S. Green,
- G. S. Hicks,
- C. Hyland,
- V. Istokskaia,
- M. King,
- D. Margarone,
- O. McCusker,
- P. McKenna,
- Z. Najmudin,
- C. Parisuaña,
- P. Parsons,
- C. Spindloe,
- D. R. Symes,
- A. G. R. Thomas,
- N. Xu,
- C. A. J. Palmer
Affiliations
- M. J. V. Streeter
- School of Mathematics and Physics, Queen’s University Belfast
- G. D. Glenn
- SLAC National Accelerator Laboratory
- S. DiIorio
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan
- F. Treffert
- SLAC National Accelerator Laboratory
- B. Loughran
- School of Mathematics and Physics, Queen’s University Belfast
- H. Ahmed
- Central Laser Facility, STFC Rutherford Appleton Laboratory
- S. Astbury
- Central Laser Facility, STFC Rutherford Appleton Laboratory
- M. Borghesi
- School of Mathematics and Physics, Queen’s University Belfast
- N. Bourgeois
- Central Laser Facility, STFC Rutherford Appleton Laboratory
- C. B. Curry
- SLAC National Accelerator Laboratory
- S. J. D. Dann
- Central Laser Facility, STFC Rutherford Appleton Laboratory
- N. P. Dover
- The John Adams Institute for Accelerator Science, Imperial College London
- T. Dzelzainis
- Central Laser Facility, STFC Rutherford Appleton Laboratory
- O. C. Ettlinger
- The John Adams Institute for Accelerator Science, Imperial College London
- M. Gauthier
- SLAC National Accelerator Laboratory
- L. Giuffrida
- ELI Beamlines Facility, The Extreme Light Infrastructure ERIC
- S. H. Glenzer
- SLAC National Accelerator Laboratory
- R. J. Gray
- Department of Physics, SUPA, University of Strathclyde
- J. S. Green
- Central Laser Facility, STFC Rutherford Appleton Laboratory
- G. S. Hicks
- The John Adams Institute for Accelerator Science, Imperial College London
- C. Hyland
- School of Mathematics and Physics, Queen’s University Belfast
- V. Istokskaia
- ELI Beamlines Facility, The Extreme Light Infrastructure ERIC
- M. King
- Department of Physics, SUPA, University of Strathclyde
- D. Margarone
- School of Mathematics and Physics, Queen’s University Belfast
- O. McCusker
- School of Mathematics and Physics, Queen’s University Belfast
- P. McKenna
- Department of Physics, SUPA, University of Strathclyde
- Z. Najmudin
- The John Adams Institute for Accelerator Science, Imperial College London
- C. Parisuaña
- SLAC National Accelerator Laboratory
- P. Parsons
- School of Mathematics and Physics, Queen’s University Belfast
- C. Spindloe
- Central Laser Facility, STFC Rutherford Appleton Laboratory
- D. R. Symes
- Central Laser Facility, STFC Rutherford Appleton Laboratory
- A. G. R. Thomas
- Gérard Mourou Center for Ultrafast Optical Science, University of Michigan
- N. Xu
- The John Adams Institute for Accelerator Science, Imperial College London
- C. A. J. Palmer
- School of Mathematics and Physics, Queen’s University Belfast
- DOI
- https://doi.org/10.1038/s41467-025-56248-4
- Journal volume & issue
-
Vol. 16,
no. 1
pp. 1 – 9
Abstract
Abstract Laser-plasma acceleration of protons offers a compact, ultra-fast alternative to conventional acceleration techniques, and is being widely pursued for potential applications in medicine, industry and fundamental science. Creating a stable, collimated beam of protons at high repetition rates presents a key challenge. Here, we demonstrate the generation of multi-MeV proton beams from a fast-replenishing ambient-temperature liquid sheet. The beam has an unprecedentedly low divergence of 1° (≤20 mrad), resulting from magnetic self-guiding of the proton beam during propagation through a low density vapour. The proton beams, generated at a repetition rate of 5 Hz using only 190 mJ of laser energy, exhibit a hundred-fold increase in flux compared to beams from a solid target. Coupled with the high shot-to-shot stability of this source, this represents a crucial step towards applications.