Journal of Marine Science and Engineering (Sep 2024)
Periodic Behavior and Noise Characteristics of Cavitating Flow around Two-Dimensional Hydrofoils
Abstract
The occurrence of cavitation in marine propellers is a major source of noise in ships. Consequently, the occurrence and noise characteristics of cavitation must be better understood to control this issue. This study focuses on identifying the occurrence and noise characteristics of cavitating flow around two-dimensional (2D) hydrofoils. Using the commercial computational fluid dynamics software STAR-CCM+, a numerical analysis was conducted on the partial cavity flow occurring around 2D hydrofoils at specific angles of attack. In addition, the cavitation noise characteristics were analyzed by conducting a frequency analysis using the predicted pressure data obtained via a fluctuating pressure sensor positioned vertically above the hydrofoil. Consequently, the numerical results were compared with existing experimental data to validate the accuracy of the simulation. This study identifies the limitations of the Reynolds-averaged Navier–Stokes (RANS) method by closely comparing it with the large eddy simulation (LES) method for assessing noise characteristics in unsteady cavitating flow. Although RANS has limitations in qualitatively assessing periodic behavior compared to LES, it effectively predicts cavitation extent and is valuable for relative assessments in practical applications.
Keywords