The ultrafast fs laser pulse heating of thin metal films is studied for the first time using the two-temperature model on the basis of the Fokker–Planck formalism. The incident laser radiation is multi-modal, while the electron temperature is described during the first 2 fs. The predictions are intended for use by experimentalists in optoelectronics, photonics, laser processing, electronics, and bio- and nanomedicine. The crucial role of the nano-sized spatial dimensions of the metal sample is highlighted. A significant result of this study is the interdependence between the target’s size, the phonon/lattice characteristics, and the coefficient β (the quotient of non-diffusive phenomena), which varies between zero (pure diffusive case) and one (pure non-diffusive case).