International Journal of Molecular Sciences (Dec 2021)

Enhanced p53 Levels Are Involved in the Reduced Mineralization Capacity of Osteoblasts Derived from Shwachman–Diamond Syndrome Subjects

  • Annalisa Frattini,
  • Simona Bolamperti,
  • Roberto Valli,
  • Marco Cipolli,
  • Rita Maria Pinto,
  • Elena Bergami,
  • Maria Rita Frau,
  • Simone Cesaro,
  • Michela Signo,
  • Valentino Bezzerri,
  • Giovanni Porta,
  • Abdul Waheed Khan,
  • Alessandro Rubinacci,
  • Isabella Villa

DOI
https://doi.org/10.3390/ijms222413331
Journal volume & issue
Vol. 22, no. 24
p. 13331

Abstract

Read online

Shwachman–Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS-OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.

Keywords