Foods (Jan 2024)
Antibacterial Effect and Possible Mechanism of Sesamol against Foodborne Pathogens
Abstract
Food safety problems caused by foodborne pathogens have become a major public issue, and the search for efficient and safe bacteriostatic agents has gained attention. Sesamol (SE), a phenolic compound abundant in sesame oil, offers numerous health benefits and exhibits certain antibacterial properties. The purpose of this study was to evaluate the antibacterial effect and potential mechanisms of SE against representative foodborne pathogens, including Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella serovar Enteritidis. The results showed that SE significantly inhibited the growth of the five pathogenic bacteria in sterile saline and pasteurized milk by 2.16–4.16 log10 CFU/g within 48 h. The results of the minimum bactericidal concentration and time–kill assay showed that SE had a greater inhibitory effect on L. monocytogenes compared with other bacteria. Additionally, SE was found to alter the cell membranes’ permeability in these bacteria, resulting in the release of intercellular proteins and DNA. A scanning electron microscopy analysis showed that exposure to SE resulted in significant changes in bacterial morphology, producing cell shrinkage and deformation. These findings suggest that SE could inhibit both Gram-negative and Gram-positive bacteria by interfering with the function and morphology of bacterial cells.
Keywords