Polymers (May 2020)

Morphology, Thermal and Mechanical Properties of Co-Continuous Porous Structure of PLA/PVA Blends by Phase Separation

  • Natthapong Chuaponpat,
  • Tsubasa Ueda,
  • Akira Ishigami,
  • Takashi Kurose,
  • Hiroshi Ito

DOI
https://doi.org/10.3390/polym12051083
Journal volume & issue
Vol. 12, no. 5
p. 1083

Abstract

Read online

Poly (lactic acid) (PLA) was blended with poly (vinyl alcohol) (PVA) in the composition of 70/30 (L7V3), 60/40 (L6V4), and 50/50 (L5V5) wt.%. L7V3 exhibits a sea–island morphology, while L6V4 and L5V5 show co-continuous phase morphologies. These polymers exhibited a solitary glass transition temperature, which obeyed the Fox equation. Thereafter, the blends were made porous by an etching process in hot water (35 °C) for 0–7 days, to remove PVA. The maximum etched PVA content of L7V3, L6V4, and L5V5 was 0.5%, 13.4%, and 36.1%, respectively; hence, L5V5 exhibited a co-continuous porous morphology with the porosity of 43.4%, the degree of swelling of 47.5%, and the pore size of 2 µm. The degree of crystallinity of PLA, exposed PLA, and L7V3 showed an insignificant change. L5V5, having the highest porosity, demonstrated the highest increase in the degree of crystallinity of approximately two times, because water induced the crystallization of PLA. The high porosity of L5V5 exhibited an excellent absorption property by increasing absorption energy more than two times, as obtained by micro indention. It had the maximum indentation depth more than 250 µm. Flexural and tensile properties considerably decreased with an increase in the porosity.

Keywords