Вавиловский журнал генетики и селекции (Sep 2018)

Genome polymorphism of the synthetic species xTrititrigia cziczinii Tsvel. inferred from AFLP analysis

  • A. A. Trifonova,
  • K. V. Boris,
  • L. V. Dedova,
  • V. A. Melnik,
  • L. P. Ivanova,
  • N. P. Kuzmina,
  • S. V. Zavgorodniy,
  • V. P. Upelniek

DOI
https://doi.org/10.18699/VJ18.406
Journal volume & issue
Vol. 22, no. 6
pp. 648 – 653

Abstract

Read online

×Trititrigia cziczinii Tsvel. is a synthetic species obtained as a result of hybridization of different wheat and wheat- grass species. ×T. cziczinii has unique characteristics, as it is a perennial species, with the ability to grow after mowing, high adaptability, resistance to diseases and pests, high protein and gluten content in the grain. All this makes it a promising new crop for agriculture. The new species is a good object for fundamental research in the field of genetics, phylogeny and evolution of cereals (Poaceae). However, there were practically no genetic studies of ×T. cziczinii. The aim of this work was to study the genetic diversity of 24 representatives of two ×T. cziczinii subspecies (ssp. Submitans and ssp. Perenne). To estimate interspecific differences, 17 samples of other tribe Triticeae species (Triticum aestivum, Triticum durum, Agropyron glaucum and Agropyron elon gatum, as well as samples of Triticum-Agropyron and TriticumElymus hybrids) were included in the analysis. For the study, AFLP method (Amplified Fragment Length Polymorphism) was chosen, which allowed us to reveal a sufficiently high polymorphism level of the studied samples. The two primer/enzyme combinations (EcoRI-ACT/MseI-CCC, EcoRI-ACT/MseI-CTA) allow ed the iden tification of 227 fragments, 224 of them were polymorphic (98.68 %), and the level of intraspecific polymorphism of 24 ×T. cziczinii samples was 68.15 %. The iden tified fragments of AFLP spectra, specific for the ×T. cziczinii representatives and the studied wheatgrass species, can be the basis for creating markers that will detect introgressions of genetic material of the genus Agropyron in the T. cziczinii ge nome. Our results indicate a greater genetic relatedness of ×T. cziczinii to T. aestivum than to representatives of the genus Agropyron. According to the cluster analysis, representatives of ×T. cziczinii and varieties of bread wheat were combined into a single subcluster, within which the samples of two species form separate groups. At the same time, the evaluation of the intraspecific genetic diversity of ×T. cziczinii showed no reliable differentiation of representatives of the subspecies Submitans and Perenne, which is probably due to uncertain genetic nature of perenniality, the main feature that divides these subspecies. The study of the unique ×T. cziczinii collection allowed us to obtain the first data on the genetics of the species, while previous studies were focused mainly on phenotypic and economically valuable traits. AFLP analysis used in this study showed high efficiency when working with less studied species, and its results are promising and useful for understanding the genetic structure of the new species (×T. cziczinii Tsvel.).

Keywords