International Journal of Applied Mathematics and Computer Science (Dec 2022)
Integrated Fault–Tolerant Control of a Quadcopter UAV with Incipient Actuator Faults
Abstract
An integrated approach to the fault-tolerant control (FTC) of a quadcopter unmanned aerial vehicle (UAV) with incipient actuator faults is presented. The framework is comprised of a radial basis function neural network (RBFNN) fault detection and diagnosis (FDD) module and a reconfigurable flight controller (RFC) based on the extremum seeking control approach. The dynamics of a quadcopter subject to incipient actuator faults are estimated using a nonlinear identification method comprising a continuous forward algorithm (CFA) and a modified golden section search (GSS) one. A time-difference-of-arrival (TDOA) method and the post-fault system estimates are used within the FDD module to compute the fault location and fault magnitude. The impact of bi-directional uncertainty and FDD detection time on the overall FTC performance and system recovery is assessed by simulating a quadcopter UAV during a trajectory tracking mission and is found to be robust against incipient actuator faults during straight and level flight and tight turns.
Keywords