Advanced Science (Aug 2022)

Phonon‐Suppressing Intermolecular Adhesives: Catechol‐Based Broadband Organic THz Generators

  • Ga‐Eun Yoon,
  • Jin‐Hong Seok,
  • Uros Puc,
  • Bong‐Rim Shin,
  • Woojin Yoon,
  • Hoseop Yun,
  • Dongwook Kim,
  • In Cheol Yu,
  • Fabian Rotermund,
  • Mojca Jazbinsek,
  • O‐Pil Kwon

DOI
https://doi.org/10.1002/advs.202201391
Journal volume & issue
Vol. 9, no. 24
pp. n/a – n/a

Abstract

Read online

Abstract Solid‐state molecular phonons play a crucial role in the performance of diverse photonic and optoelectronic devices. In this work, new organic terahertz (THz) generators based on a catechol group that acts as a phonon suppressing intermolecular adhesive are developed. The catechol group is widely used in mussel‐inspired mechanical adhesive chemistry. Newly designed organic electro‐optic crystals consist of catechol‐based nonlinear optical 4‐(3,4‐dihydroxystyryl)‐1‐methylpyridinium (DHP) cations and 4‐(trifluoromethyl)benzenesulfonate anions (TFS), which both have multiple interionic interaction capability. Interestingly, compared to benchmark organic crystals for THz generators, DHP‐TFS crystals concomitantly achieve top level values of the lowest void volume and the highest crystal density, resulting in an exceptionally small amplitude of solid‐state molecular phonons. Simultaneously achieving small molecular phonon amplitude, large optical nonlinearity and good phase matching at infrared optical pump wavelengths, DHP‐TFS crystals are capable of generating broadband THz waves of up to 16 THz with high optical‐to‐THz conversion efficiency; one order of magnitude higher than commercial inorganic THz generators.

Keywords