Heliyon (Aug 2024)

Hesperidin activates the GLP-1R/cAMP-CREB/IRS2/PDX1 pathway to promote transdifferentiation of islet α cells into β cells Across the spectrum

  • Wang Zhang,
  • Lele Wu,
  • Ru Qu,
  • Tianfeng Liu,
  • Jiliang Wang,
  • Ying Tong,
  • Weijian Bei,
  • Jiao Guo,
  • Xuguang Hu

Journal volume & issue
Vol. 10, no. 16
p. e35424

Abstract

Read online

Background and aims: In all age, FoShou as a Chinese medicinal herb has been active in various kinds of Traditional Chinese medicine formula to treating diabetes. Hesperidin (HES), the main monomeric component of FoShou, has been extensively investigated for interventions with pathogenic mechanism of diabetes as well as subsequent treatment of associated complications. Islet β-cells have an essential effect on dynamically regulating blood sugar. Functional abnormalities in these cells and their death are strongly associated with the onset of diabetes. Therefore, induction of islet endocrine cell lineage re-editing for damaged βcell replenishment would be a promising therapeutic tool. Previously, it has been found that HES can protect islet β-cells in vivo, But, the regenerative function of HES in islet β cells and its role in promoting differential non-β cells transdifferentiation into β cells and cell fate rewriting associated mechanisms remain unclear.This work focused on investigating whether HES can induce islet α cells transdifferentiation into β cells for achieving damaged β cell regeneration and the causes and possible mechanisms involved in the process. Materials and methods: In brief, 60 mg/kg/d streptozotocin (STZ) was administered intraperitoneally in each male C57bL/6J mouse raised by the high-sugar and high-fat diet (HFD) to create a diabetic mouse model with severe β-cell damage. After 28 consecutive days of HES treatment (160 mg/kg; 320 mg/kg; once daily, as appropriate). Tracing the dynamics of α as well as β cell transformation, together with β cells growth and apoptosis levels during treatment by cell lineage tracing. The self-enforcing transcriptional network on which the cell lineage is based is used as a clue to explore the underlying mechanisms. Guangdong Pharmaceutical University's Animal Experiment Ethics Committee (GDPulac2019180) approved all animal experiments. Results: Localization by cell lineage we find that transdifferentiated newborn β-cells derived from α cells appeared in the islet endocrine cell mass of DM mice under HES'action. Compared to the model group, expressed by Tunel staining and CXCL10 levels the overall apoptosis rate of β-cells of the pancreas were reduced,the inflammatory infiltration feedback from HE staining were lower.Ki-67 positive cells showed enhanced β-cell proliferation. Decreased HbA1c and blood glucose contents, elevated C-Peptide and insulin contents which respond to ability of nascent beta cells. Also upregulated the mRNA levels of MafA, Ngn3, PDX-1, Pax4 and Arx. Moreover, increased the expression of TGR5/cAMP-CREB/GLP-1 in mouse intestinal tissues and GLP-1/GLP-1R and cAMP-CREB/IRS2/PDX-1 in pancreatic tissues. Conclusions: HES directly affects β-cells, apart from being anti-apoptotic and reducing inflammatory infiltration. HES promotes GLP-1 release by intestinal L cells by activating the TGR5 receptor in DM mouse and regulating its response element CREB signaling. GLP-1 then uses the GLP-1/GLP-1R system to act on IRS2, IRS2 as a port to influence α precursor cells to express PDX-1, with the mobilization of Pax4 strong expression than Arx so that α cell lineage is finally reversed for achieving β cell endogenous proliferation.

Keywords