Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China
Cong Zhang
Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
Wen-Hua Ming
Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
Ying-Zhi Huang
Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
You-Fei Guan
Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China; Corresponding author at: Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
Xiao-Yan Zhang
Health Science Center, East China Normal University, Shanghai 200241, China; Corresponding author.
Summary: As a major social and economic burden for the healthcare system, kidney diseases contribute to the constant increase of worldwide deaths. A deeper understanding of the underlying mechanisms governing the etiology, development and progression of kidney diseases may help to identify potential therapeutic targets. As a superfamily of ligand-dependent transcription factors, nuclear receptors (NRs) are critical for the maintenance of normal renal function and their dysfunction is associated with a variety of kidney diseases. Increasing evidence suggests that ligands for NRs protect patients from renal ischemia/reperfusion (I/R) injury, drug-induced acute kidney injury (AKI), diabetic nephropathy (DN), renal fibrosis and kidney cancers. In the past decade, some breakthroughs have been made for the translation of NR ligands into clinical use. This review summarizes the current understanding of several important NRs in renal physiology and pathophysiology and discusses recent findings and applications of NR ligands in the management of kidney diseases.