Archives of Metallurgy and Materials (Jun 2015)
Porous Magnesium Based Bionanocomposites For Medical Application
Abstract
In this study, Mg-10 wt.% hydroxyapatite nanocomposites and their scaffolds were synthesized using a combination of mechanical alloying and a powder metallurgy methods. The phase and microstructure analysis was carried out using X-ray diffraction, scanning electron microscopy, and the properties were measured using hardness and corrosion testing apparatus. According to the Scherrer method for XRD profiles, the average size of mechanically alloyed Mg+10 wt. % HA for 20 h powders was of order of 21 nm for Mg. The Vickers hardness of the Mg-10 wt.% HA reached 87 HV0.3. The corrosion resistance of the bulk Mg-10 wt.% HA nanocomposite and its scaffolds was investigated in the Ringer’s solution. The potentiodynamic corrosion resistance tests revealed that the porosity of the Mg-10 wt.% HA nanocomposite scaffolds had no negative effects compared to microcrystalline Mg.
Keywords