BMC Cancer (Jul 2012)

LOH at 6q and 10q in fractionated circulating DNA of ovarian cancer patients is predictive for tumor cell spread and overall survival

  • Kuhlmann Jan,
  • Schwarzenbach Heidi,
  • Wimberger Pauline,
  • Poetsch Micaela,
  • Kimmig Rainer,
  • Kasimir-Bauer Sabine

DOI
https://doi.org/10.1186/1471-2407-12-325
Journal volume & issue
Vol. 12, no. 1
p. 325

Abstract

Read online

Abstract Background We recently showed that LOH proximal to M6P/IGF2R locus (D6S1581) in primary ovarian tumors is predictive for the presence of disseminated tumor cells (DTC) in the bone marrow (BM). For therapy-monitoring, it would be highly desirable to establish a blood-based biomarker. Therefore, we quantified circulating DNA (cirDNA) in sera of 63 ovarian cancer patients before surgery and after chemotherapy, measured incidence of LOH at four cancer-relevant chromosomal loci, correlated LOH with tumor cell spread to the BM and evaluated prognostic significance of LOH. Methods cirDNA was fractionated into high- and low molecular-weight fraction (HMWF, LMWF) for LOH-profiling, utilizing PCR-based fluorescence microsatellite analysis. BM aspirates were analyzed for DTC by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. Results cirDNA levels in the HMWF before surgery were predictive for residual tumor load (p = 0.017). After chemotherapy, we observed a significant decline of cirDNA in the LMWF (p = 0.0001) but not in the HMWF. LOH was prevalently detected in the LMWF with an overall frequency of 67%, only moderately ablating after chemotherapy (45%). Before surgery, LOH in the LMWF at marker D10S1765 and D13S218 significantly correlated with tumor grading and FIGO stage (p = 0.033, p = 0.004, respectively). In both combined fractions, LOH at D6S1581 additionally associated with overall survival (OS) (p = 0.030). Moreover, solely LOH at D10S1765 in LMWF after therapy correlated with DTC in BM after therapy (p = 0.017). Conclusion We demonstrate the applicability and necessity of DNA-fractionation prior to analyzing circulating LOH and identify LOH at D10S1765 and D6S1581 as novel blood-based biomarkers for ovarian cancer, being relevant for therapy-monitoring.

Keywords